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ABSTRACT 
 

Engineers have long used control systems utilizing models and feedback loops to control real-
world systems. Limitations of model-based control led to a generation of intelligent control 
techniques such as adaptive and fuzzy control. Human brain, on the other hand, is known to 
process a variety of inputs in parallel, ignore distractions to focus on the task in hand. This 
process, known as cognitive control in psychology, is unique to humans and some higher-
class animals. We are interested in implementing such cognitive control functionality in 
robots. This paper tries to answer the following question: How could cognitive control 
functionality be implemented in HAM-inspired robots?  
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1. INTRODUCTION 
 
As the need to control complex systems increases, it is important to look beyond 

engineering and computer science for new ways to control robots. For example, humans have 
the capacity to receive and process enormous amount of sensory information from the 
environment, exhibiting integrated sensorimotor associations as early as two years old [1]. A 
good example of such sensorimotor intelligence by adults is the well-known Stroop test [2].  
Most goal-oriented robots currently perform only those or similar tasks they were 
programmed for and very little emerging behaviors are exhibited. What is needed is an 
alternative paradigm for behavior learning and task execution. Specifically, we see cognitive 
flexibility and adaptability in the brain as desirable design goals for the next generation of 
intelligent robots.  

At the HAM Workshop in 2006, a concept of human cognitive control [3] and a multi-
agent-based, hybrid cognitive architecture for robots [4] were presented. In this paper, we will 
present the progress made during the last year on the cognitive architecture and control, 
working memory training, and a self-motivated, internal state-based action selection 
mechanism.  
 
 

2.  COGNITIVE CONTROL FOR ROBOTS 
 

Engineers have long used control systems utilizing feedback loops to control mechanical 
systems. Figure 1 illustrates a class of adaptive/learning control systems [5]. Limitations of 
model-based control led to a generation of intelligent control techniques such as fuzzy 
control, neuro computing and reconfigurable control.  
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Figure 1. An Adaptive Control System [5] 
 

The human brain is known to process a variety of stimuli in parallel, ignore non-critical 
stimuli to execute the task in hand, and learn new tasks with minimum assistance. This 
process, known as executive or cognitive control, is unique to humans and a handful of 
animals [6]. Figure 2 illustrates a conceptual model of cognitive control which we are using to 
realize robust behavior generation and learning for our humanoid robot. 
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Figure 2. Model of Cognitive Control Modified from Miller, et. al [6]
 

As the complexity of a task grows, so do the software complexities necessary to process 
sensory information and to control actions purposefully. Development and maintenance of 
complex or large-scale software systems can benefit from domain-specific guidelines that 
promote code reuse and integration through software agents.  Information processing in our 
humanoid robot ISAC (Intelligent SoftArm Control) is integrated into a multiagent-based 
software architecture based on the Intelligent Machine Architecture (IMA) [7]. IMA is 
designed to provide guidelines for modular design and allows for the development of 
subsystems from perception modeling to behavior control through the collections of IMA 
agents and associated memories, as shown in Figure 3.  

For any learning system, memory plays an important role. As Gazzaniga et al., states, 
“Learning has an outcome, and we refer to that as memory. To put it another way, learning 
happens when a memory is created or is strengthened by repetition.” [1, p. 302]. ISAC's 
memory structure is divided into three classes: Short-term memory (STM), long-term 
memory (LTM), and the working memory system (WMS).  STM holds sensory information 
of the current environment in which ISAC is situated. LTM holds learned behaviors, semantic 
knowledge, and past experience. WMS holds task-specific information called “chunks” and 
streamlines the information flow to the cognitive processes during the task execution. STM is 
implemented using a sparse sensory data structure called the Sensory EgoSphere (SES). It 
was inspired by the egosphere concept defined by Albus [8] and serves as a spatio-temporal 
STM [9]. LTM stores information such as skills learned and experience gained for future 
recall. 
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Figure 3. Multiagent-Based Cognitive Robot Architecture 
 
 

3.  THE WORKING MEMORY SYSTEM 
 
3.1 Central Executive and Working Memory System 
 

Cognitive functions ISAC can perform, i.e. cognitive control, are modeled after 
Baddeley’s human working memory model [10]. In his model, the “central executive” 
controls two “working memory” systems: the phonological loop and the visuo-spatial sketch 
pad. Cognitive control functions are currently implemented using STM, LTM, the Attention 
Network and WMS. As discussed, STM handles sensor-based percepts. These percepts can be 
assigned focus of attention (FOA) or gating by the Attention Network [11]. This happens as a 
result of associated knowledge (such as emotional salience) with the sensed percepts. FOA-
based percepts are then passed to the WMS as candidate task-related chunks.  

“Biological working memory represents a limited-capacity store for retaining information 
over the short term and for performing mental operations on the contents of this store” [12]. 
This type of memory system is said to be closely tied to task learning and execution. [12]. 
Inspired by this, we have implemented the working memory structure into ISAC to provide 
the embodiment necessary for exploring the critical issues of task execution and learning. Our 
hypothesis is that this integration will lead to a more complex, but realistic robotic learning 
system involving perceptual systems, actuators, reasoning, attention, emotion, and short- and 
long-term memory structures. 
 
3.2 WM Training Experiments for Percept-Behavior Association Learning 
 

Within the ISAC architecture, learning how to respond to novel tasks is done an untrained 
working memory system. When a novel stimulus is present, this system explores different 
responses and, over time, learns what information from short- and long-term memory should 
be focused on to best execute the novel task. As the system learns, the trained working 
memory (WM) is stored in episodic memory and can be retrieved in the future for quick, 
reliable, task execution. Experiments have been performed to utilize this task-learning portion 
of the ISAC cognitive architecture [13]. These experiments relate to tasks for which ISAC 



 

had no previous experience with the situation at the time of training. Figure 4 shows the task 
learning loop involving the working memory within the cognitive architecture. Figure 5 
shows sample configurations for the behaviors used in this section and the following sections. 
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Figure 4. Task-Learning Loop in ISAC Cognitive Architecture 
 

 
 

 
 
 
 
 
 
 
 
 

(a)                                           (b)                                        (c) 
 

Figure 5. Sample Configurations for Behaviors used (a) Reach, (b) Wave, (c) Handshake  
 
The training conducted utilizing the WMS represented initial trial-and-error responses to 

novel tasks. For each experiment, the WMS initialized an untrained instance of working 
memory. This was required because current computational limits only allowed a trained WM 
to be used for similar types of tasks. For instance, the tasks reach to the bean bag and track 
the LEGO toy are similar because each task requires one percept and one behavior. The task 
of interacting with a person, however, is not similar to these two and would require a 
separately trained WM. Novel tasks were those for which a trained WM could not be found. 
The interpolation and execution of behaviors in this experiment, and those described later, 
were performed using a modification of the Verbs and Adverbs algorithm [14], discussed 
further in Appendix 2. 
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Figure 6. (a, b) Sample Configurations for Reaching  
 



 

Thus far, WM has been successfully trained to perform the types of tasks discussed 
above, task involving one percept and one behavior. The example used in the remainder of 
this section will be, reach to the bean bag, as shown in Figure 6(a, b). In our trials, two bean 
bags were present and the WMS was required to choose one. Preliminary results for training 
this WM have been presented in [13].  

During the initial training of this WM a high exploration percentage (15%) was used 
which helped avoid local maxima. In other words, 15% of the time the system continued to 
explore random actions even after a solution had been found. In addition, a reward rule was 
provided that rewarded the WM for chunk selection based on the success of the current trial. 
Once the WM began to converge on the appropriate responses, the other cognitive processes 
could then begin recording and storing episodes. However, currently a human trainer 
performed the action of deciding when to record episodes. Among the items stored in these 
episodes was the current WM. Therefore, when a similar situation is encountered in the 
future, ISAC could not only recall matching similar episodes but also retrieve the now-trained 
WM used during those episodes.  
 
3.3 System Performance 
 

The performance of the working memory during training was evaluated using that 
working memory’s specified reward rules. During the learning process, reward was given 
based on the following three criteria: 

 
1. Did the behavior chunk chosen successfully accomplish the task?  
2. Did the percept chunk chosen successfully accomplish the task?  
3. What was the difference between similar performances? (e.g. reaching to the nearest 

bean bag rather than the farthest one)  
 

Reward criterion 3 was implemented to allow differentiation between similar choices. An 
example of this is the reach to the bean bag task represented in Figure 6. Note that two bean 
bags are present and a reach to either one would accomplish the task. However, it may be 
desirable to have ISAC understand that when the reach to the bean bag command is given, 
the intention of the instructor is actually to have ISAC reach to the nearest one, or perhaps 
always the blue or red one. Prior to task execution, the WMS had no understanding of this 
intention, but our experiments have shown that within approximately 20 trials (Figure 7 and 
8), WMS learns this relationship. Furthermore, Reward criterion 3 can be changed without 
notice. When the WMS fails to receive reward when reward was expected, it began exploring 
alternative choices. In other words, it detected that the instructor’s intention had changed and 
attempted to learn the new intention.  

When the reward criterions were met, discrete positive reward was given to the system. 
No preference (i.e., reward of 0) was given if the system did not choose correctly. 
Implementing the exploration percentage encouraged exploration even after learning had been 
accomplished. This measure helped avoid local maximum.  

Initial trials were performed in simulation to speed-up the testing phase of this percept-
behavior learning. The simulation was removed the time-bottleneck of generating and 
performing behaviors. If the WMS desired to act on an object within the workspace, it was 
assumed that ISAC would be able to perform the desired action and reward was given 
accordingly. Appendix 3 shows the contents of short-term and long-term memory systems 
and some sample contents of working memory during training. 

In these trials, WMS was allowed to choose two “chunks” from the short- and long-term 
memory systems to accomplish the task. However, the working memory was not restricted to 
choosing exactly one percept and one behavior. If the working memory chose to focus on two 
percepts, two behaviors, or chose not to load enough chunks then a behavior or percept was 
necessarily chosen at random. When there was not a behavior (or percept) chunk present, a 
random number generator was used to fill in the missing chunk. This ensured that an action 
was always performed. The reasoning for this was to encourage the WMS to make choices. 



 

Without this safeguard, the WMS would begin avoiding the decision by not loading any 
chunks during the trials where the WMS was consistently making incorrect choices. This was 
a behavior inherent in the learning networks used to create the working memory system. 
Randomly filling in the blank chunks allowed the system to continue exploration during these 
trials.  

To graphically demonstrate the ability of WMS better, training trials were also conducted 
that only required working memory to learn one chunk (percept or behavior) at a time. Figure 
7 shows the learning curve for the behavior reach for the command reach to the bean bag. 
Prior to these trials, ISAC was taught a number of behaviors including three right arm 
behaviors, reach, handshake, and wave. Within 20 trials, the WMS learned to associate the 
command reach with the appropriate behavior. Figure 8 shows the same curve for learning 
the bean bag percept. Again, within 20 trials the WMS had learned not only to associate a 
bean bag with the command, but also that the blue bean bag was the intended bean bag. After 
100 trials, the WMS quit receiving reward for the blue bean bag, the intention had changed to 
the red bean bag and within 20 more trials this intention had been learned.  
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Figure 7. Learning to Associate the Reach Command with the Correct Behavior 
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Figure 8. Learning to Choose the Correct Bean Bag. 

 
 

4. THE ROLE OF CEA AND FRA FOR TASK SWITCHING 
 

4.1 The First-order Response Agent (FRA) and the Central Executive Agent 
(CEA) 
 

Figure 9 depicts the key IMA agents within the Self Agent. The Central Executive Agent 
(CEA) which is responsible for cognitive control during task execution invokes behaviors 
necessary for performing the given task.  CEA operates in accord to intention which the 
Intention Agent interprets from a task command. Decision making in CEA is mediated by 
affect which is managed by the Affect Agent.  The Activator Agent invokes head and arm 
agents to execute actions. The First-order Response Agent (FRA) is responsible for generating 
both routine and reactive responses. The term first-order responses refers to responses of the 



 

system that are not generated from the cognitive process.  This term was also used by 
Shanahan [15] in regard to responses generated reactively by the physical system which are 
contrast to responses generated by the higher-order loop which represent “imagination” in his 
work. 
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Figure 9. Structure of the Self Agent  
 

First, reactive responses are handled by FRA by invoking corresponding behaviors when 
certain percepts receive ISAC’s attention.  This concept is inspired by the schema theory 
where the system responds to certain stimuli by performing certain actions [16]. The 
associations between percept-behavior in FRA are provided as initial knowledge.  FRA is 
implemented as a multithreaded process in which each stimulus-response pair is given its own 
separate running thread.  As salient percepts on SES are put in Focus of Attention (FOA) by 
the Attention Network [11], each thread compares the systems current most salient percept 
with that particular threads percept from the percept-behavior pair.  FRA posts both the 
matched percept and the behavior onto the Working Memory (WM) as chunks when a match 
is found.  The Activator Agent then takes the chunks from WM and distributes to Atomic 
Agents in the system for behavior execution. 

FRA has one thread that is responsible for routine responses.  This thread invokes 
corresponding behaviors when certain situations are recognized according to the percepts in 
FOA and the current task.  The recognized situation causes FRA to retrieve the learned skill 
associated with the situation from LTM. A learned skill contains the behavior needed to 
perform a particular task.  Note that the current task could be assigned externally by a human 
or internally generated by self-motivation (see Section 5 for self-motivated decision making).  
FRA posts the behavior found in the retrieved learned skill and the percept in FOA into WM 
as chunks where the Activator Agent uses the chunks similarly to the case of reactive 
responses.  However, the routine response thread will be subsumed when any one of reactive 
response threads are active. This phenomenon is similar to subsumption of behaviors in 
Brook’s Subsumption Architecture [17]. 
 
4.2 FRA and Task Switching Experiment 
 

A two-part experiment was conducted to validate how FRA can handle the routine and 
reactive responses.  Figure 10 shows the IMA Agents and memory components utilized in the 
experiment. 
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Figure 10. First-order Response in ISAC Cognitive Architecture 

 
4.2.1 Routine Response Experiment 

The first part of the experiment was conducted to validate the capability to execute a task 
using a routine response and the ability to maintain the task context after a reactive response 
is invoked. 
 

Experimental steps 
1. ISAC actively monitors the environment. 
2. Barney doll is placed within the field of view causing ISAC to recognize it, i.e., the 

situation, and to decide to play with the doll according to its innate knowledge. 
3. When someone claps the hands, ISAC detects the location of the sound using the 

sound localization algorithm described in Appendix 4.  
4. ISAC stops executing the task and saccades toward the source of the sound. 
5. Because the task context is still active in the working memory, ISAC goes back to the 

task after the reactive response is completed. 
 

4.2.2 Task Switching Experiment 
The second part of the experiment was conducted to validate the functionality of FRA to 

switch tasks when a new situation is recognized when an event occurs. 
 

Experimental steps 
1. ISAC continues the task from the above experiment. 
2. Someone enters the room and approaches ISAC. 
3. When a motion is detected at the door, using the motion detection method described 

in Appendix 4, ISAC stops executing the current task, fixates on the detected motion, 
and tracks the motion with the cameras. 

4. When the motion enters the workspace, ISAC recalls a similar learned experience, 
thus executes the handshake behavior instead of going back to the previous task. 

 
Figure 11 shows the lab view during the experiment. 
 

    
 
  (a)   (b)             (c)           (d) 

 
Figure 11: Lab Views during Experiments - ISAC (a) Played with Barney, (b) Responded 

to Clapping Sound, (c) Detected Motion, (d) Shook Hands with the Person 



 

This experiment shows a setup of ISAC cognitive architecture to perform simple 
cognitive control during task execution. In this setup, we focus on FRA which was used to 
execute task using first-order responses. To help providing simple cognitive control, CEA 
was used to generate task internally and make decision for task switching.  In this section, we 
would like to evaluate FRA-based operation of the system using the following criteria 

 
1. The ability to switch back and forth between reactive and routine responses 
2. The ability to use routine responses to execute tasks 
3. The ability to switch tasks based on situational change 

 
In this experiment, the system has the ability to switch between reactive and routine 

responses seamlessly without losing its attention from the task. Reactive responses caused the 
system to immediately suspend the current task and attend to the particular percept that 
triggers the response. Reactive responses provided by FRA serve as a non-task oriented 
mechanism which helps the system to become aware of other events that happen in the 
environment that may require attention, therefore, the system should respond within a short 
period of time after an event happens. A short delay is expected, however, because of the 
complexity of the detection algorithms, and the propagation delay time in communication 
between agents.  In the experiment, a set of clapping sounds were present at various angles 
where 0 degree was directly in front of ISAC. Table 1 summarizes the amount of time that the 
system took to respond after clapping sounds were heard, and the amount of time the system 
takes to resume the previous action after the reaction responses were completed. 
 

Trial Angles 
(degrees) 

Response Time 
(ms) 

Resuming Time 
(ms) 

1 64.07 102 153 
2 -38.65 906 143 
3 18 105 135 
4 -49 594 141 
5 -2.65 716 139 

 
               Table 1. Response and Resuming Times to Loud Noise Reaction 

 
Both parts of the experiment in this section show that FRA can be used to execute simple 

tasks successfully using knowledge about the task in LTM. Two tasks used in this experiment 
were to play with Barney doll and to handshake the person. Note that in this experiment, the 
tasks were not given by a person but instead were internally generated by CEA. The task 
information was passed between CEA and FRA using a shared memory slot. This method 
allows both agents to communicate very fast. FRA executed a task as soon as CEA posted the 
task to the memory slot. 

The task switching experiment demonstrates the capability of the system to switch tasks 
based on situational change. The decision to switch tasks comes from CEA based on the 
situation. In this experiment, the system did not go back to the previous task because the robot 
detected that a person was moving toward it and entering the workspace. Due to strong 
association between the event and a task in the learned experience, CEA decided to switch to 
handshake with the person instead of going back to the previous task. 

This performance evaluation in this section is performed based on partial results from the 
experiment.  The final performance evaluation will be completed before the workshop. 

 
5. SELF-MOTIVATED, INTERNAL STATE-BASED ACTION SELECTION 

MECHANISM 
 
Cognitive robots may face complex situations where they cannot rely on the state of the 

environment alone to make decisions. For example, the internal state of affect is shown to 



 

play an important role in the human decision making [15] [18]. In our architecture, affect is 
considered a part of the internal state of the system. It is maintained by the Affect Agent, 
which keeps track of the current affective level of ISAC. Similar to the work of Shanahan 
[15], affect interacts with CEA by running in parallel, influencing focus of attention, and 
offering mediating task execution by influencing the probabilistic decision making model in 
the CEA [19]. However, unlike Shanahan’s work, affect in our architecture does not offer 
executive veto power. This veto power is kept by CEA. 

The total state of the system is represented by two sets of state variables, external and 
internal. External state variables are represented by percepts and are placed in the Focus of 
Attention. Internal state variables include ISAC hardware parameters such as joint angle 
positions as well as variables such as intention and affect (Figure 3). These variables, Sext and 
Sint , combine to form the overall situation. 

 
 Situation ( Stotal ) =  Sext x Sint     (1) 

 
Only a portion Stotal is required for the work discussed in this section. The internal state 

variable used is Saffect. The important external variables are those represented by Spercepts and 
Stask. As will be discussed below, Saffect is going to be determined quantitatively from these 
external variables.  

In the ISAC cognitive architecture, task switching is based on the appearance of events, 
time-critical salient changes in the external state. The response for the current event depends 
not only on the current situation and the internal state, but also on the past experiences ISAC 
has encountered. The past experience of an event is stored as an “episode” within the Episodic 
Memory. We call the ability for ISAC to make decisions using the current state variables and 
past experiences (episodes) “situation-based action selection” (Figure 12).  
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Figure 12. Situation-Based Action Selection Mechanism 
 
5.1 Affect Agent and Excitement Meter 

 
Robots operating in the real world often encounter situations where more than one course 

of action could be considered appropriate. When ISAC encounters a situation for which two 
separate episodes are retrieved from the episodic memory, where each episode involves a 
different response to the situation, it is necessary to choose one in order to continue task 
execution. In any cognitive robot, this choice should not be made based on hard-coded if-then 
rules. Rather it should be mediated by past experiences and internal motivations. This 
mediation enables ISAC to make its own choices to deal with competing situations. Towards 
the goal of internally motivated task mediation, we have begun developing a means of 
allowing ISAC to make self-motivated decisions based on its own preference, or the affect 
[18]. In our architecture the Affect Agent determines affectual associations with the current 
situation and provides suggestions to the CEA that impact decision-making. The suggestions 
made to the CEA indicate which choices would lead to higher or lower affectual states. The 
suggestions cause an increase (or decrease) in the probability that a particular course of action 
is chosen. In other words, the Affect Agent tells the CEA to increase (or decrease) the 



 

probability that an action is chosen. Because the CEA can ignore the input from the Affect 
Agent, this input is regarded as a suggestion.  

The CEA system implements a probabilistic model when making decisions with 
conflicting goals [19]. Past experience from episodic memory is used to fill in these 
probabilities. When episodes are retrieved, a list of possible actions is created and each action 
is assigned a priority, pj. The probability that action, Aj is chosen is calculated as the priority 
of that action divided by the sum of the priorities of all actions. Further details of this 
probabilistic model are discussed in Appendix 1. The Affect Agent modifies these 
probabilities by using the affect associated with a particular set of stimuli to proportionately 
change the priority associated with that set of stimuli or action. By updating this priority, the 
probability that action is chosen is increased (or decreased). For example, if two sets of 
stimuli are present, the probability that the stimulus with the highest associated affect is 
chosen is increased. Likewise, the probability of choosing the second stimulus (the least 
affectual stimulus) is decreased.  

In Figure 13, the current situation is input into the Affect Agent which calculates a new 
value for excitement and feeds this value back into the internal state. The current situation is 
passed on to the CEA, which uses that information to retrieve similar episodes from episodic 
memory and create an action list. Probabilities are assigned to the actions in the action list and 
these probabilities are updated by the affect from the Affect Agent.  
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Figure 13. The Role of the Affect Agent in the ISAC Architecture 
 

 Prior work involving the Affect Agent [19] used pre-determined, fixed affect vectors. It is 
important to note that there are many potential affective state variables for ISAC but the 
current model will focus on only a single affect variable excitement. Our model of the Affect 
Agent (Figure 13) uses the following function for determining the affective state proposed by 
Anderson [20] but has also been suggested by Picard [18]  
 

Excitement = Ae-Bt     (2) 
where 
                      A = f(Sext)      (3) 

 
B =g(Sext)      (4) 

 
The values of A and B are parameters that are determined by the external state, Sext. For 

example, situations associated with the action reach to the bean bag may retrieve a low value 
for A but a high value for B, indicating that these situations are not very exciting and that they 
decay rapidly. The variables (A, B) are functions of ISAC’s current state, but they also 
represent one level of learning within this model. For instance, in a given situation the values 
of (A, B) can be modified to relate that the particular situation should no longer be deemed as 
exciting or, in fact, is to be considered more exciting the next time it is encountered. This is 
done by increasing or decreasing the stored values of (A, B) for particular situations.  

Equation (2) assumes that ISAC’s excitement level is continuous. As discussed above, 
task switching is based on the appearance of events, therefore it is more appropriate to use an 



 

event-based hybrid system [21] to calculate affect. For example, the action reaching to the 
bean bag is a continuous action, however the appearance (or disappearance) of the bean bag 
percept is a discrete event. In order for the Affect Agent to deal with this, a second system 
(whose input is the external state and whose output is a discrete affect variable – D) is used as 
a switching mechanism from one situation to another, as shown in Figure 14. This switching 
mechanism re-initializes the local, event-based time used by the Affect Agent.  
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Figure 14. Hybrid Structure of the Affect Agent  
 

Using our computational model of affect, the ISAC architecture is designed to mediate 
task switching to favor more exciting situations. The current implementation within the Affect 
Agent for the variable excitement is termed the Excitement Meter. This meter calculates the 
excitement response level to sets of stimuli and displays the history of excitement value 
graphically on the “chest” monitor mounted on ISAC (Figure 15). The current value of 
excitement is shown on the black axis. The previous values trail off to the right. Figure 15(a) 
shows the chest monitor as it normally appears. Figure 15(b) shows a close-up of the chest 
monitor when the excitement meter is displayed. Two jumps in excitement can be seen in the 
history section of the meter.  

 
 

      
(a) (b) 

Figure 15. (a, b) ISAC Chest Monitor 
 

5.2 Excitement Meter Experiment 
 

An experiment involving the Excitement Meter has been designed to validate the 
functionality of the Affect Agent and to demonstrate the ability of this system when using 
affect in cognitive decision-making. In the designed experiment, competing sets of stimuli are 
presented to ISAC. The first set of stimuli is a command (from a human) to perform a task. 
The second set of stimuli is a number of toys that ISAC enjoys playing with. Each set of 
stimuli will have an associated level of excitement, and this excitement level (along with past 
experiences and the current situation) will help CEA to choose what to focus on in order to 
either (a) perform the task on hand, or (b) play with the toys.  

Experimental Steps 
1. A pair of toys that ISAC can recognize are placed on a table in front of ISAC.   
2. ISAC recalls a past episode which involved playing with the toys and subsequently 

begins to play with the toys. 
3. A person enters the room and ask ISAC to perform a task. The task is encoded using 

key word search and posted onto SES.  



 

4. CEA recognizes this new stimulus (i.e., task command) and the Excitement Meter 
calculates excitement associated with this situation.  

5. The Excitement Meter passes the current excitement associations to CEA, where the 
decision is made to switch the task or not. 

6. Based on the decision by the CEA, ISAC selects the appropriate action.  
 
5.3 System Performance 

 
Unlike many physical systems, the performance of a cognitive system must be evaluated 

on how it decides which action is appropriate to take, and not on the merit of right or wrong 
choices. The decision made by CEA involves a certain degree of uncertainty that it is, in fact, 
the best choice at that time. The probabilistic model that is used to make these decisions is 
influenced by the excitement associated with these choices, which is in turn derived by the 
Affect Agent. The candidate criteria used to evaluate system performance are: 

 
1. The degree that the response exhibited by the computational model was mediated by 

the level of the Excitement Meter. 
2. The degree of influence on task execution by the probabilistic decision-making 

derived from this computational model.  
 

Prior to conducting the experiment described above, it was necessary to define initial 
weightings (A, B) for the various sets of stimuli that can be detected. The Excitement Meter 
was designed so that it was initially more excited by “fun” tasks such as playing with toys, or 
listening to music over performing work (i.e. executing commands). The value of A for 
playing with toys was set to twice the value of A for executing commands. However, B for 
executing commands was set to half the value of B for playing with toys. Using this design, 
when the experiment was initially run, ISAC chose to play with the toys rather than 
performing the command. Additionally, the excitement discrepancy initially encoded between 
the two tasks caused the probability that playing with toys was chosen to increase to 100%, 
and subsequently executing commands was decreased to 0%. Figure 16 shows the level of 
excitement associated with each set of stimuli during the experiment.  
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Figure 16. Excitement Levels For Competing Tasks 

 
However, when this experiment was allowed to run for longer than ~3 minutes ISAC’s 

excitement level dropped sufficiently enough that it then became desirable to pay attention to 
the person and execute the command. Much of this behavior should be attributed to the fact 
that the current excitement associations are still heavily dependent on the initial weightings. 
Multiple trials over multiple days under varieties of circumstances have not yet been 
performed, therefore, the initial weights of (A, B) have not been modified by the system to 
reflect ISAC’s personal experiences.  



 

Performance criterion 1 was evaluated based on the effectiveness of equation (2). For this 
experiment, the computational model worked as intended in representing affect. The fact that 
certain excitement associations initialize higher or lower and decay faster or slower is the 
reason why equation (2) was chosen. Since the parameters (A, B) can be retained and updated 
like standard network weights, this equation adds dynamic flexibility to this system by 
allowing it to learn excitement associations over time. This can be done by rewarding 
particular choices and punishing others. Therefore, over time the stimulus executing 
commands may begin to initialize higher than playing with toys based on ISAC’s own 
experience.  

Performance criterion 2 was evaluated based on the decisions made by the CEA. Using 
the weights (A, B) in equation (2) the CEA could choose to ignore or accept the suggestions 
made by the Affect Agent. The values (A, B) represented the strength of the input from the 
Affect Agent. When the CEA ignores the suggestions it does not allow the probabilistic model 
to be updated by the Affect Agent. In order to evaluate the performance criterion, in this 
experiment the CEA was forced to accept the suggestions made by the Affect Agent. 
Therefore, when both sets of stimuli were present the suggestions passed to the CEA by the 
Affect Agent caused the probability that playing with toys would be chosen to increase to 
100% and, conversely, executing the command to decrease to 0%. However, due to this 
drastic change in the action probabilities, the initial decision making within the CEA required 
no decision. However, later in the experiment a decision was necessary, whether to continue 
to play with the toys or switch to the more exciting execute the command task. Figure 16 
shows that when this decision was necessary, the associated excitement levels with each task 
were approximately equal. Likewise, the CEA chose to switch tasks, at this point in the 
experiment, 50% of the time.  

It is important to note that, for completeness, a third choice to do nothing should have 
been made available to ISAC. Future experiments will include this option. Also important in 
future work is the incorporation of other affect variables, and their role in influencing each 
other. For example, fear of negative reward for not performing a task could negatively 
influence excitement. Joy for being successfully able to play with the toys could positively 
influence excitement, possibly overriding fear. In addition, these new variables should also 
influence the probability that an action is selected. Future work must incorporate updating the 
parameters (A, B) over longer periods of time, possibly several days. These experiences, over 
time, are the keys to creating a dynamic affectual system that is individual to ISAC and, to a 
certain extent, unpredictable by humans.  
 
 

6. FUTURE PLANS 
 
In order to execute a task more robustly, CEA must monitor and evaluate the expected 

outcome of task execution according to the behavior-percept combination and interrupt task 
execution if necessary in real. We are currently looking into one real-time Windows operating 
system offered by German company KUKA. (http://www.kuka-controls.com) In addition, 
ISAC requires past experience as an episode to be used in cognitive control. However, the 
current representation of episode is too simplistic. We plan to investigate a more robust 
episodic memory representation and retrieval.  Another part of our future work includes 
expanding the capability of the system to handle more complex tasks that involve multiple 
percepts and behaviors.   

Future work with the self-motivated, internal state-based action selection requires several 
key components. First, more internal state variables need to be added to the affect agent. Such 
variables as fear, happiness, pain, etc. would better enable ISAC to make decisions in more 
complex situations. How to incorporate the variables into the probabilistic decision making 
model CEA currently uses and how to incorporate the effect these variables have on each 
other are two important issues to be looked at. Second, when to update the values (A, B) in 
the excitement equation (2) to reflect a change in ISAC preference is an important issue with 
the Excitement Meter. These variables represent a key feature of the cognitive system, i.e. the 



 

ability to modify its own preferences based on experience. Third, the question “When should 
or should not CEA accept input from the Affect Agent?” (i.e. the change in the probabilistic 
model” needs to be examined closer). Currently, the decision is based on the strength of the 
excitement association. A more robust solution integrating past experience, knowledge of the 
current situation, and other affect variables is required. Lastly, the hybrid system nature of the 
Affect Agent needs further investigation. Currently, events were sets of stimuli defined a 
priori. The real world, however, does not conform to a predefined structure and it is important 
to understand how to organize low-level events (such as the appearance of a percept) into 
higher-level events that trigger complex cognitive control mechanisms.  
 
 

7. CONCLUSIONS  
 

     During the past decade, we have seen major advances in the integration of sensor 
technologies, artificial intelligence, and machine learning into a variety of system design and 
operation. A next challenge will be the integration of human-like cognitive control into 
system design and operation.  
     This paper described our efforts to develop the next generation of robots with robust 
sensorimotor intelligence using a multiagent-based cognitive control. Experiments conducted 
so far validated the effectiveness of our design.  
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APPENDICES 
 

 APPENDIX 1. Spatial Attention and Action Selection 
 

Humans pay attention by emphasizing the locations of percepts with high saliency.  This 
process is known as spatial attention [22]. In our architecture, spatial attention is realized 
through assigned Focus of Attention (FOA) by the Attention Network [11]. The percepts in 
attention then are brought into working memory for further processing. During an event, past 
episodes are retrieved from Episodic Memory using cues such as percepts and task 
information. Given the event and current state, the system will need to make decision using 
the action performed during these past episodes. The actions will be extracted from episodes, 
sorted, and given priority based on cues such as affective values and rewards of the episode 
from which they are extracted. 

The action selection process retrieves episodes using cues such as the affect value.  
Retrieved episodes then are assigned probabilities as follows: Let pj be the priority for the j-th 

action and ∑
=

=
N

j
jT pp

1
, where N is the number of the retrieved actions, then action Aj will be 

assigned the probability 

T

j
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p
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The action selection process then will be performed probabilistically as follows: 
The unit interval [0,1], representing the summation of ][ jAP , is partitioned into N regions, 
and the  j-th region has a width of ][ jAP .  A uniform random number R is generated, 0≤ R ≤1.  
Let T(0) = 0. For each region j, compute the boundary of  ][ jAP  as T(j-1) to T(j), where 

∑
=

=
j

k
kAPjT

1
][)( .     (6) 

If T(j-1)≤ R ≤T(j), select the j-th action. Figure 17 illustrates the action selection process 
currently used. 
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Figure 17.  Probabilistic Action Selection Process 
 
 

APPENDIX 2. Verbs and Adverbs for Behavior Execution 
 

The Verbs and Adverbs algorithm is a motion interpolation technique originally 
developed for computer graphics by Rose, et al [14]. In this technique motion exemplars are 
used to construct verbs that can be interpolated across different spaces of the motion 
represented by the adverbs. An important aspect in storing and re-using a motion for a verb is 
the identification of the keytimes [23] [14] of the motion. The keytimes represent significant 
structural breaks in the particular motion. For the Verbs and Adverbs technique to function 
properly individual motions for the same verb must have the same number of keytimes and 
each keytime must have the same significance across each motion. Figure 18 shows keytimes 
for three example motions. The example motions are recording of the same motion, three 
different times. This information is used to create the verb, handshake. The keytimes in this 
example are derived by analyzing the motions using a technique called Kinematic Centroid 
[24]. The x-axis represents the normalized point index for each motion. The y-axis represents 
the Euclidian distance of the kinematic centroid of the arm from the base of the arm.  

 
Figure 18. Example Motions and Keytimes [23] 

 



 

Each verb can have any number of adverbs, each of which relate to a particular space of 
the motion. For example, the verb reach could have two adverbs: the first related to the 
direction of the reach and the second related to the distance from ISAC’s origin that the 
particular motion is to extend. Extending this example, adverbs could be added to include 
features from any other conceivable space of the motion, such as the strength of the motion or 
the speed of the motion. Stored in the LTM are the verb exemplars and the adverb parameters 
for each verb. New motions such as reaching, or handshaking are interpolated by ISAC at run 
time using the new (desired) adverb values. One important point, in our system new motions 
are never extrapolated. This is due to the fact that extrapolated motions can potentially lead to 
undesirable (or unachievable) arm configurations. Currently, ISAC is using the Verbs and 
Adverbs algorithm for three behaviors: reach, handshake, and wave. 

 
 

APPENDIX 3. Memory Contents During WM Training 
 

Table 2 shows the contents of short-term and long-term memory during the experiment 
discussed in Section 3. During the experiment, two bean bags were present in front of ISAC. 
Additionally, three behaviors had been trained and placed in long-term memory. This 
information was encoded into working memory “chunks”, void data structures. The WM then 
chose from these chunks and the contents of WM guided task execution. In other words, if the 
chunks reach and blue bean bag were present then ISAC reached to the blue bean bag. Table 
3 shows example contents of working memory during four of the training trials. When one 
percept and one behavior chunk was not present, the missing chunk(s) were filled in at 
random.  
 

SES LTM 
1. bean bag: location = (Figure 6.b), 
type = Blue 

1. reach 

2. bean bag: location = (Figure 6.a), 
type = Red 

2. handshake 

 3. wave 
 

  Table 2. Memory Contents During Simulation Training 
 
 
 

   Working Memory Contents 
Trial #: 1 2 3 4 
Chunk 1 Blue bean 

bag 
Red bean 
bag  

Wave Handshake 

Chunk 2 reach Blue bean 
bag 

Blue bean 
bag 

Red bean 
bag 

Random: NA Wave NA NA 
Reward: 20 0 0 0 

 
                Table 3. Working Memory Contents During Simulation Training 
 
 
APPENDIX 4. Perception Encoding Used in FRA Experiment 
 
4.1 Sound Localization 

 
Within the ISAC cognitive system, the location of a loud noise, such as hand clapping, is 

used as a means of focusing attention and a cause for invoking the reactive response in FRA.  
The location of the sound source is detected using sound localization. The basic configuration 



 

of the sound localization system used includes a pair of microphones, located a finite distance 
apart as illustrated below. The sound waves arrive at the microphones at different times. 
Using this time difference, the probability of the clapping sound found at any given location 
in the environment is calculated and the result is sent to the SES. 

 

 
 

Figure 19. Sound Localization 
 
4.2 Motion Detection 

 
Motion detection is performed by the motion detection percept agent that utilizes a laser 

range finder (LRF) mounted above the cameras on the head. The laser range finder is 
positioned so planar scans of the area in front of the robot can be obtained from various 
angles. Successive scans from the same angle are subtracted to obtain a temporal difference 
map. The positions of non-zero values along the temporal difference map, the angle of the 
planar scan, and the range data are used to indicate the position of motion in front of ISAC 
which the information is posted to the SES. 

 

 
 

Figure 20. Motion Detection 


